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FOREWORD

This Technical Memorandum was prepared by LMSC/HREC for NASA/
MSFC under Contract NAS8-20387, entitled "Non-Linear Dynamic Analysis

of Structures."

This report is Volume III of three volumes which comprise the Final
Reportunder Contract NAS8-20387 as follows:

Volume I =~ "Synthesis of Structural Damping," b
C. S. Chang and R, E, Bieber (LMSC
HREC A783975)

Volume II - "Non-linear Dynamic Analysis," by R. O.
Hultgren (LMSC/HREC A783963)

Volume III - "A Study of Hereditary Springs in Relation

to Hysteretic Damping," by G. A, Ramerez
(LMSC/HREC A783201)

ii
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INTRODUCTION

There are two mathematical models which are commonly used to
represent the restoring force in a spring-mass system showing hysteretic
damping. The first is the complex stiffness model where the restoring force

is taken as
F(x) = (a + ib)x

where a and b are constants. The second is the frequency dependent damping

model where the force is taken as
F(x) = % x + rx

where h and r are constants. Both models yield an energy loss per cycle
proportional to amplitude square and independent of frequency under forced

sinusoidal motion.

By considering a combination of springs and dashpots, Caughey

(Reference 4) introduced a third model giving the restoring force as

t
F(t) = rx(t) - A / Ei [— t(t 'T)]H%" x(T) dT
t
o

where r and A are constants and Ei(u) is the exponential integral. Caughey

also discusses the deficiency of the above first two models.
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In this report we investigate the hysteretic spring and find that,under a
suitable choice of the memory function, energy loss per cycle proportional to
amplitude square and independent of frequency for a spring-mass system
can be predicted. We find four such functions which are equivalent to four
models for the restoring force. One of these of course, is the one proposed
by Caughey in Reference 4. However, we must mention that our mathematical
considerations are independent of Caughey's representation of springs and
dashpots. In addition, we find that we can predict energy loss per cycle
that is given by a polynomial of even powers of the amplitude and independent

of frequency.
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Section 1
HEREDITARY SPRING

Let us recall that a relation written as

Z(t) = M[f(:'); b] (1-1)

=00

means that Z depends on the values taken by one or more functions of the
time, f(7), in the interval between -w and the present time, t. The quantities
Z are said to be functionals of {(7) and are also functions of t and the param-

eter b in the ordinary sense (cf. Volterra in Reference 1).

It is known that the force displacement relation of a linear spring is

given by

where F is the force, r the spring constant and x the displacement (or
elongation) measured from some reference position where the force is equal
to zero. We wish to explore some of the more obvious consequences when

the force displacement relation of the spring has the general form

t
Fit) = rx(t) + &F [x(‘r)] (1-2)

=00

i, e., the force depends not only on the actual displacement but also on the

values taken by the displacement in the interval between - and the present
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time, t. Equation (1-2) is the force displacement relation of a hereditary
spring, i.e., a spring with memory. It is then said that the function x(7),
Té(-0,t), determines the history of the displacement x (the primary history),
and the function F(t) determines the history of the force F (the hereditary
history). We often find it more convenient to introduce the difference history

xd(‘r) of the displacement x defined by
x4(T) = x(7) - x(t) (1-3)

Let us use the convention that whenever the argument variable t is not
exhibited, it means that the value of the parameter is that at the present

time t.
We may write Equation (1-2) in the form

rx + g[}:(‘lt')]

~00
t

rx +ooé_[xd(‘r'); x]

-00

ry
"

(1-4)

We remark that for a spring which has always been held at a constant value

x, the difference history xd(‘r) becomes the zero history xd(‘r) = 0.

Under the proper smoothness conditions, the functional ¢ can be ex-
panded in a series analogous to a Taylor's series (Reference 1) and if all the
terms in it of higher order than the first can be neglected, we obtain a linear

functional, i.e.,

t t
gt x] - / @1t 7, x) xg(7) AT (1-5)
=00 -0 .
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where the kernal, ¢, is a continuous function of t, ¥, and x. Thus, for this

special case Equation (1l -4) reduces to
t
F=rx+ f P(t, T, x) xd(‘r) dr (1-6)
Zo0

We shall further assume that the kernel @ satisfies an order condition of the

form

@(t, nx) < 6>0 (1-7)

¢t -7t

Thus, in Volterra's terminology, (Reference 1) & is a linear functional with
order of continuity §. Now in Reference 2, Volterra has proven that with the
order -condition, Equation (1-7), F will be a periodic function of t whenever
x(t) is a periodic function (principe du cycle ferme) if and only if the kernel
function ¢ depends on the two variables, t and T, through their difference,
t - 7. We shall delimit the the class of spring under consideration by assum-
ing that F is periodic when x is periodic. Volterra calls the hereditary of

the nature we assume here "invariable hereditary."

It follows that under the above assumptions Equation (1-6) has the

reduced form

ot

F=rx+ ¢(t - T x) xd(‘r) dr (1-8)

]
8

It is convenient to introduce the change of variable

s=t-T , 0<s <00 , (1-9
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and write Equation (1-8) in the form

F=rx+ /w(p(s,x)x(;) (s) ds (1-10)
4]
where
x & (a) = x(t - 8) - x(t) (1-11)

Let us further introduce the function Y¥(s,x) through

T
Wis,x) = / O\, x)AA (1-12)

s
whence

d -
TS Wis, x) = @ls,x) (1-13)
We note that in view of Equation (1-12)

Lim W¥(s,x)=0
§ e 0O : (1-14)

Introduction of Equation (1-13) into Equation (1-9) and integration by parts
yields
00
F = rx - / w(s,x)-a‘i;-x(t-s) ds (1-15)
0

where we have used Equation (1-14) and that in view of Equation (1-11)
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x (:1) (0) = x(t) - x{t) =0

TENC TR SR

Let us further assume that the kernel function ¥ can be approximated
by a Taylor series expansion about x = 0 and retain only terms up to x, i.e.,

we assume

Wls,x) = Wyls) + W, (s)x + Wy (s)x” (1-16)

it follows that with ¥ given by Equation (1-16), the force displacement relation

becomes

00 00
F=rx- / wo(s)Tds—x(t-s) ds - x / llll(s) c(lis x(t - s) ds
0 0
o (1-17)
- x2 / lllz(s) —gg- x(t - s) ds
0

If we take the memory functions dfl and llfz to be zero, then we have

o0

F = rx - f Yyls) -ga- x(t - 8) ds (1-18)
0
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Section 2

ENERGY LOSS PER CYCLE

Let us assume as a displacement history

x(T) = A sin (0T+¢) (2-1)

where

x(t - s) = A sin (wt +¢) cosws - A cos (it +¢) sinws (2-2)

Substituting Equation (2-2) into the force displacement relation, Equation
(1-17), yields

1 1
F(t) = A sin(wt +¢) [r + w '}’0 (w) + Aw sin (wt +¢) 7’1 {w)

2 1 2
+ A"wsin (wt +¢) )'2 (w)] + A cos {wt +¢)[co 70 (w) (2-3)

2 2 2 2
+ Aw sin (wt +¢) ‘}'1 (w) + Aw sin"(wt +@) ‘}'2 (w)}

where
1 00
'Yn (W) = f llfn(s) sinwsds , n=0,1,2
0
2 20 (2-4)
Y ()= / . (s) cos wsds , n=0,1,2
0
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The energy loss per cycle corresponding to the history, Equation (2-1), is

given by
T + 27/w

AW = f F(T) —=x(T) dT (2-6)
T

Performing the integration of Equation (2-6), we obtain

2 2 AZ 2
AW = A w 70 () + T 72 (w) (2-7)

2
We note that the absence of 71 (w) in Equation (2-7) implies that for the

history, Equation (2-1), the term

00

d
x(t) /wl(s) - Xt - s) ds
0
does not contribute to the energy dissipated per cycle.
Suppose that we were to require that under the history, the hereditary

spring give an energy loss per cycle that was proportional to A2 and independ-

ent of w for all w>0. Inspection of Equation (2-7) shows that for this spring

the memory function, WZ(S) must be equal to zero and that
2 1
= — 2-8

Now we know that
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0 0
7@ = I AC (2-9)

0
where [ (w) is the Fourier cosine transform of wo(s). In view of Equations

(2-8) ancf (2-9), it follows that

0
I (o= _i)_ (2-10)
2
or equivalently
0
12“ (@) = % (2-11)

where B is a positive constant. Formally then, we would have

00

U(s) = \/% B / £05 O8 4w (2-12)

w
0

However, the integral on the right-hand side of Equation (2-12) has the
value N

o0

/ .E%w_s dw (2-13)

0

1
8

independent of s. This means that our considerations so far cannot yield

such a spring.

10
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Consider the memory function given by
wo(s) = - By Y, (as) , a>0 (2-14)

where Bo is a positive constant and Yo(as) is Weber's Bessel function of the

second kind of order zero. It can be shown (Reference 3) that

o0

- B0 / Yo(as) cos ws ds = mo 1 ) a<w<oo (2-15)

A [ ) (%)2}1/2

We have for 0<a/u)<0.1,

1.0 « —1 < 1.005 (2-16)

[ ) (g)z]l/z
W
Thus by choosing llfo(s) to be given by Equation (2-14) for 0<a/w<0.1, the

energy lost per cycle is essentially proportional to A2 and independent of w.

Moreover, if we further choose
= - 2-1
wz(s) B, Yo(as) ’ a>0 ( 7)

where B, is a positive constant,the energy loss per cycle, Equation (2-7), is

given by

aW = K, A% + K, A (2-18)

11
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where

B

0 7B,
Ko = 172
[1-(%)] 4[1-(%

Thus, for 0<@/w<0.1, the choice of Equations (2-14) and (2-17) for Ufo(s)

respectively, yields an energy loss per cycle which is independent of w and

"non-linear" in A",

Considering that in the force-displacement relation of the hereditary
spring, Equation (1-17), the term associated with the memory function llfl(s)
does not contribute to the energy dissipated per cycle, we might choose

Ufl(s) = 0. It follows that the force-displacement relation

o0
F(t) = rx(t) + By / Yolas) L x (t-5) as (2-20)
0

will, under the history, Equation (2-1), and 0<@/w<0.l, yield an energy
dissipated per cycle that is linear in A'2 and i;xdependent of w, while the

force-~displacement relation

00

F(t) = rx(t) + [BO + B2 xz(t)] / Yo(as) E(is' x (t-s)ds (2-21)
0

will yield an energy dissipated per cycle which is non-linear in A2 and

independent of w.

Liet

00

¥(s) = - / o ax . 1=0,2 (2-22)

s

12
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Then
> 0 00
7 () = - / f @ (§) d§ cosws ds
0 s
o 4
= - / / cosws ds (pn(f) dé (2-23)
0 0
00
1 .
= -z / ¢ (§) sinw¢d§ , =n=0,2
0
Equation (2-7) now reads
1 2 1
AW = - mAZ [Ao(w) +A, (oo)] (2-24)
where
1 00
)\n(oo) = f (,on(s) sinws ds » n=20,2 (2-25)
0

For the choice

T =2Byfsinn %), a>0  (2-26)

%ls) = By e < (1 -e™%) )

where B0 is a constant, we have

13
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A (w) = - 0 tanh (779) (2-27)
0 2a a

For w/a=6. 5/m, we have

1 BO
}\0(0)) = -5 (2-28)
f For the choice
_ cos as -
(po(s) = - B0 —_— a>0 {(2-29)
we have
0 O<w<a
1 B, -
Ao(w) = I w=a (2-30)
Borr
- — A<W<0
For the choice
= - YA 2~
Gole) = - By & : a>0 (2-31)
we have
A@) = - By tan”! &) (2-32)
o{@) = - By tan {7

14
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1
For w/a>10 and the choice of Equation (2-31), )\o(oo) becomes

Ao(co) =~ - BO , w/a>10 (2-33)

For each one of the choices of (po(s), Equations (2-26), (2-29) and (2-31),
the energy loss per cycle will, for some range of ®, be proportional to A

and independent of frequency.

For tpo(s) given by Equation (2-26), we have

4B

W, (s) = - log tanh 22 (2-34)

For (Po(s) given by Equation (2-30), we have

o0
Wy(s) = B, / Eés—af d¢ = - B, Ci (as) (2-35)
S

—

where Ci(as) is the cosine integral,
For (po(s) given by Equation (2-31), we have

00

e % .
W, (s) = By, f * d¢ = - B, Ei(-as) (2-36)

s

where Ei(-as) is the exponential integral.

15
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Section 3
EQUATION OF MOTION FOR A BEAM

Under the change in variable T=1t - s we can write the spring force-

displacement relation, Equation (1-18), in the form

t
F(t) = rx(t) + / lllo(t -T) -qd?.-x(‘r) dar (3-1)

=00

where lllo(t) is any one of the memory functions discussed in the preceeding

section,

Leet us consider a beam made of material that has a stress-strain

relation of the form

t
o(x,z,t) = E [é(x, z,t) + / l]fo(t -T) _ad_'l—" €(x,z,T) dT (3-2)

=00
where g(x, z,t) and €(x, z,7) are the stress at the' present time and engineer-
ing strain at the generic time T at a point P(x, z) located at a distance z from
the neutral axis. Let p(x,T) be the radius of curvature of the neutral axis of

the beam at the generic time 7. With the assumption that plane sections be-

fore deformation remain plane after deformation, it can be established that

€(x, z,T) = F(i_,?) (3-3)

From this we find

16
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d , _ 8 1
T e = 2 % [y (3-4)

We may therefore write Equation (3-2) in the form

t
- 1 il 1 )
a(x, Z,t) = EZ%px’t + /lpo(t -T) —'a—r— [m]de (3-5)
~00

The bending moment, M(x,t), at the point x may then be obtained from

M(x,t) = / zo(x, z,t) dA
A(x)

as

t
M(x, t) = EI(x) }Hxl_t; + / Wyt - 7) _aa? [mxl,_ﬂJd-r} (3-6)
-0

where I(x) is the moment of inertia of the beam.

The relation between the displacement y(x,7T) of the neutral axis of the

beam and p(x,T) is given by

1 = V‘I(XIT) (3-7)
plx,T) {1 + [y’ (o) ]—z; 3/2

where a prime indicates partial derivative with respect to x. It follows

that

17
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P [ 1 ]= }'r”gx,‘r) _ 3y"(x,‘7")'y'(x,‘r) v (x,7)
N TR O S R e
l | . (3-8)

where a dot over the quantity indicates the partial derivative with respect to T.

It is customary to assume that the displacement history y(x,7) of the

neutral axis of the beam is such that
! 2
[y x.7)]°<<1 (3-9)

for all T<t. Using Equation (3-9) we may approximate Equation (3-7) by

1

S60T) =y (x,7T) (3-10)
and Equation (3-8) by
C ot Naiem -3 2y =) VT (3-11)
5T [p’(i_,?i]"y T Tox ' o

Substitution of Equations (3-10) and (3-11) into Equation (3-6) yields

t
M(x, t) = EI(x) v (x,t) + / W, lt - 7) v (x,7) 4T

=00

(3-12)
t

-3 f Wt -7 2 [y ) 3 ) ar

=00

18
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Let
t (3-13)
M(x,t) = -;} EL(x) / Wlt -7) —;ﬁ-[y (7] % 5 (1) a7
-0
and write Equation (3-12) as
t
M(x, t) = EI(x) [y"(x, £) + / Wolt -7) ¥ (6,7) a7 |+ Mix,¢) (3-14)
-0

Note that had we taken the partial derivative of l/p(x,‘r') with respect
to T "after'" we had made the approximation by using Equation (3-9), we would
have lost 1\//\I(x, t). Moreover, at this stage of the formulation the assumption
of Equation (3-9) does not yield sufficient grounds for the neglect of this term.
In addition, a little thought will show that the assumption of Equation (3-9)
and the assumption used to write Equation (3-3), i.e., plane sections remain
plane, are indeed independenf of each other. Therefore, the grounds (if they

A
exist) for neglect of M(x,t) will have to be sought elsewhere.

. The equation of motion of the beam may now be obtained from

G &
-d—z- M(x,t) + p(x) a—z y(x,t) = f(x, t) (3-15)
X t

where [1(x) is the mass density per unit length. Introducing Equation (3-14)

into (3-15), we obtain

d.2 1"t t t dz N\
-é;-z- El(x) |y (x,t) + / lllo(t -T)y (x,7)dT +:1_Z M(x, t)
(3-16)
a2
F ) Sy (0 = £ (a8
ot

19
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as the equation of motion of the beam.

/N
Suppose we had found grounds for the neglect of M(x,t). The equation

of motion would then be

2 H t 1" 2
fz EI(x) l:y (x,t) + f Wolt =T) ¥ (x,7) d7|p+ pix) -:—tzy(x,t) = f(x,t)

B (3-17)

Let us consider the case of free vibration, i.e.,, f(x,t) =0, and

assume the solution of Equation (3-17) in the form
y(x,t) = X(x) T(t) (3-18)

Substitution of Equation (3-18) into (3-17), with f(x,t) = 0, yields

t
2
< [El(x) -d_}é_} [T ¥ f Wyt -7) S d-r] e Xﬁ:} =0 (3-19)

=00

This equation suggests that if X is the solution of

2 2
i [EI(X) d_z;} w6 @7 - (3-20)
dx dx

then Equation (3-18) will be the solution to the homogeneous equation of (3-17)

if T(t) is the solution of

t
2
ST Q% T+ /wo(t-r)%— d'r]=0 (3-21)
dt
~00

20
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When the beam is subjected to homogeneous boundary conditions, Equation
(3-20) has an infinite number of solutions Xi (i=1,..,0), i.e., Xi are the

eigenfunctions of

Blx) —- | - uix) Q7 X, = 0 (3-22)

yet) = D X Tyl (3-23)

where Ti(t) are now the solutions of

dZTi 2
+.Qi

t
d
=00

subject to prescribed initial conditions. Thus, when the vibration of the
beam is governed by Equation (3-17), normal uncoupled modes exist but they

are damped.

If instead of Equation (3-17) we have Equation (3-16), then separation
of variable technique is not applicable since we have a non-linear integro-
differential equation. The solution must then be sought by other means and

it is senseless to talk about normal modes of vibration for the beam.

By assuming that the hereditary effects in Equation (3-24) prior to an
instant tg<t are negligible and taking tj = 0 we can use Laplace tranform
techniques to solve Equation (3-24). The problem then reduces to finding

the inverse transform of

21
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T,(0) (p +¥,) + T,(0)

Hl
]

— (3-25)
p2 +.Q? (1+p IJIO)

where p is the Laplace transform parameter and a bar over a quantity denotes
the Laplace transform. Thus, we have

1 = t
T, = 5 T.(p) €7 dp (3-26)

Br

where / is the Bromwich contour integral. The evaluation of the integral,
Br

Equation (3-26) with

Wylt -7) = - By Ei [-alt -7]] (3-27)

has been obtained by Caughey (Reference 4).

The longitudinal vibrations of a rod are governed by the equation

| 2
2o, t) = px,t) L5 u (x,t) (3-28)
at

where p(x,t) is the mass density per unit volume and u(x,t) is the longitudinal
displacement. The strain is now given by

€(x,t) = 56; u (x, t) 4 (3-29)

22
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The stress-displacement relation is now given by ’

a(x,t)=E[-——u(x t) + /w(t -T) ai g: dr|  (3-30)

To within the first order in du/dt, the mass density per unit volume is
approximately constant in its time variable. Thus, upon substitution of

Equation (3-25) into (3-28) we obtain

/qxo(t -r)—7 %% gr = _512__‘-9-5- (3-31)

where C2 = E/p. Concentrating on steady state we seek solutions of Equation
(3-31) in the form

u(x, t) = X{x) T(t) (3-32)

Thus Equation (3-31) separates into the two equations, namely

2 2
24X 4 %2- X =0 | (3-33)
dx
and
a®T 2 dT
dt
-0

Thus, normal uncoupled damped modes exist for longitudinal vibrations.

23
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Section 4
CONCLUDING REMARKS

In a real vibratory system described by a spring mass system, the
restoring force of the ""spring' is not entirely conservative, Under cyclic
deformation of the spring, mechanical energy is consumed. The presence
of such dissipative forces is generally described by the general term,
structural damping. Forces due to structural damping are, as a rule, small,

but often their presence affects the dynamic behavior of a vibratory system.

It is generally accepted that when structural damping is caused by the
material of the spring in a spring-mass system, the hysteresis of the spring
material under cyclic deformation is responsible for the energy dissipation.
Precise measurements on the stress-strain relationship of most materials
show that even at stress levels much below accepted elastic limits cyclic

straining will produce a hysteresis loop.

Many experimentalists have confirmed through their experiments that
numerous engineering materials will, for a wide range of frequency, show
that the energy loss per cycle is proportional to the square of the strain and

independent of the frequency at which the strain is applied.

We have shown that by considering a hereditary spring, energy loss per
cycle (proportional to amplitude square and independent of frequency) can be
predicted with sufficient accuracy provided we choose an appropriate memory
function., Four of these memory functions were found. It is imperative to
point out that an equivalent representation of our hereditary spring by an

appropriate combination of springs and dashpots need not exist.

The equation of motion for a beam under the Euler-Bernoulli hypothesis

was briefly discussed. The stress-strain relation for the beam material was

24



LMSC/HREC A783201

without justification other than by analogy, taken to be in the same form as

the hereditary spring,

In a continuous system the energy dissipated must, according to the
principle of conservation of energy, be transformed into other forms of
energy. In this case the dissipated mechanical energy is transformed into
heat. This strongly suggests that the stress-strain relation for a continuous
system that shows hysteretic damping be investigated such that it be in
accordance with all the conservation principles which unify continuum physics.

In particular it must be obtained through proper thermodynamic considerations.

It is strongly recommended that the constitutive equation for this material
be obtained through a proper linearization of the constitutive equation of an
ideal material under finite strain. In this way all the methodological principles
which unify constitutive theory of non-linear continuum mechanics are available

in order to arrive at the constitutive equation for the ideal material.

25
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